Topic Models - LDA - Experiments

نویسنده

  • Arun Jayapal
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجره‌های هم‌پوشان

A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...

متن کامل

Efficient Methods for Inferring Large Sparse Topic Hierarchies

Latent variable topic models such as Latent Dirichlet Allocation (LDA) can discover topics from text in an unsupervised fashion. However, scaling the models up to the many distinct topics exhibited in modern corpora is challenging. “Flat” topic models like LDA have difficulty modeling sparsely expressed topics, and richer hierarchical models become computationally intractable as the number of t...

متن کامل

Exploring Topic Coherence over Many Models and Many Topics

We apply two new automated semantic evaluations to three distinct latent topic models. Both metrics have been shown to align with human evaluations and provide a balance between internal measures of information gain and comparisons to human ratings of coherent topics. We improve upon the measures by introducing new aggregate measures that allows for comparing complete topic models. We further c...

متن کامل

Sentiment Analysis with Global Topics and Local Dependency

With the development of Web 2.0, sentiment analysis has now become a popular research problem to tackle. Recently, topic models have been introduced for the simultaneous analysis for topics and the sentiment in a document. These studies, which jointly model topic and sentiment, take the advantage of the relationship between topics and sentiment, and are shown to be superior to traditional senti...

متن کامل

Topic Modeling with Document Relative Similarities

Topic modeling has been widely used in text mining. Previous topic models such as Latent Dirichlet Allocation (LDA) are successful in learning hidden topics but they do not take into account metadata of documents. To tackle this problem, many augmented topic models have been proposed to jointly model text and metadata. But most existing models handle only categorical and numerical types of meta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014